AUTOMATIC GENERATION OF CABLE’S DYNAMIC MODELS

Ciência E Natura

Endereço:
Revista Ciência e Natura | Campus Sede-Cidade Universitária | Av. Roraima nº 1000, Prédio 13, Sala 1122 | Fone/Fax +55(55) 3220-8735 | Bairro Camobi
Santa Maria / RS
97105-900
Site: http://www.ufsm.br/cienciaenatura
Telefone: (55) 3220-8735
ISSN: 2179-460X
Editor Chefe: Marcelo Barcellos da Rosa
Início Publicação: 30/11/1979
Periodicidade: Quadrimestral

AUTOMATIC GENERATION OF CABLE’S DYNAMIC MODELS

Ano: 2017 | Volume: 39 | Número: 2
Autores: Sebastião Cícero Pinheiro Gomes, Thiago Ávila Pouzada
Autor Correspondente: Sebastião Cícero Pinheiro Gomes | [email protected]

Palavras-chave: Flexible structures, cable, dynamic modeling, discrete formalism, underwater applications

Resumos Cadastrados

Resumo Inglês:

Dynamic modeling of cables is a research theme of great importance and practical application nowadays in the underwater oil industry. However, due to non-linearity behavior present on cable dynamics, as well as the need to work with many degrees of freedom, to develop dynamic models for these systems becomes a hard task. To develop dynamic models of cables, in this article is proposed a discrete formalism, which supposes the cable consisting of rigid links connected by fictitious elastic joints. The cables were considered with one of its endings articulated to a floating structure (ship or platform), while on the other ending were considered two cases: one free terminal loading; ending fixed to the ground. The cables are submersed and the hydrodynamic drag was considered from a simple model, proportional to the square of the relative velocity between the structure and the fluid. Using the Euler-Lagrange formalism, the dynamic models for cables considering two, three and four links were developed. From these models algorithms have been developed to automatically generate dynamic models for any number of links to represent in a discrete form the cable’s continuous flexibility. Simulations were performed, which showed the results agreeing qualitatively with the physical expected. A software has been developed to display animation from the spatial configuration of the cable. This animation, based on data from numerical simulation, allowed us show that the developed dynamic models give a great sense of physical reality.