Construções hiperbólicas interativas: relações métricas e bilhares

REMAT: Revista Eletrônica da Matemática

Endereço:
Rua. Gen. Osório - Centro
Bento Gonçalves / RS
Site: https://periodicos.ifrs.edu.br/index.php/REMAT
Telefone: (54) 3204-2100
ISSN: 2447-2689
Editor Chefe: Greice da Silva Lorenzzetti Andreis
Início Publicação: 02/08/2015
Periodicidade: Semestral
Área de Estudo: Ciências Exatas, Área de Estudo: Matemática

Construções hiperbólicas interativas: relações métricas e bilhares

Ano: 2022 | Volume: 8 | Número: 2
Autores: Isabelle Siqueira da Costa, Marcel Vinhas Bertolini
Autor Correspondente: Marcel Vinhas Bertolini | [email protected]

Palavras-chave: Construções Geométricas; Plano Hiperbólico; Plano Neutro; Relações Métricas; Bilhares Construções Geométricas; Plano Hiperbólico; Plano Neutro; Relações Métricas; Bilhares

Resumos Cadastrados

Resumo Português:

Este trabalho explora a geometria do plano hiperbólico e, mais geralmente, de planos neutros, por meio de construções com retas e circunferências executadas no disco de Poincaré através do software GeoGebra. Verificam-se no plano hiperbólico os Teoremas de Ceva e de Euler, além de relações métricas associadas a baricentros e ortocentros. A técnica usual de se dobrar e desdobrar trajetórias de bilhar, em regiões poligonais, é estabelecida no plano neutro, motivada pelo traçado de poligonais minimizantes como, por exemplo, no problema de Fagnano. Essa ferramenta viabiliza descrições de bilhares em faixas e parcialmente em triângulos acutângulos, mostrando como suas propriedades se relacionam com o plano ser euclidiano ou hiperbólico. É feita uma demonstração elementar de uma propriedade de unicidade da trajetória órtica em triângulos hiperbólicos acutângulos, e são apresentadas provas completas acerca de triângulos órticos em planos neutros.



Resumo Inglês:

This paper explores the geometry of hyperbolic and, more generaly, neutral planes, through straightedge and ruler constructions executed in the Poincaré disk in the software GeoGebra. The Theorems of Ceva and Euler are verifyed in the hyperbolic plane, besides metric relations associated to centroids and orthocenters. The usual technique of folding and unfolding billiards trajectories in polygonal regions is established in the neutral plane, motivated by the drawing of minimizing polygonal paths as, for example, in Fagnano's problem. This tool makes possible to describe billiards in stripes and, partially, in acutangle triangles, showing how its properties relate with the plane being euclidean or hyperbolic. An elementary proof is provided of an uniqueness property of the orthic trajectory in hyperbolic acutangle triangles, and complete proofs are given about orthic triangles in neutral planes.



Resumo Espanhol:

Este trabajo explora la geometría del plano hiperbólico y, más en general, de los planos neutros, a través de construcciones con líneas y círculos ejecutadas en el disco de Poincaré utilizando el software GeoGebra. Se verifican los Teoremas de Ceva y Euler en el plano hiperbólico, además de relaciones métricas asociadas a baricentros y ortocentros. La técnica habitual de plegar y desplegar trayectorias de billar, en regiones poligonales, se establece en el plano neutro, motivada por el trazado de poligonales minimizantes, como, por ejemplo, en el problema de Fagnano. Esta herramienta permite descripciones de billares en bandas y parcialmente en triángulos agudos, mostrando cómo sus propiedades se relacionan con si el plano es euclidiano o hiperbólico. Se hace una demostración elemental de una propiedad de unicidad de la trayectoria órtica en triángulos hiperbólicos agudos y se presentan demostraciones completas sobre triángulos órticos en planos neutros.