Das tentativas frustradas de provar que o quinto postulado de Euclides era um teorema, surgiram as Geometrias Não Euclidianas. Com os quatro primeiros postulados de Euclides e a negação do quinto, surgiram outras Geometrias cujos postulados são possíveis em modelos planos que são tão consistentes quanto o da Geometria Euclidiana. Neste artigo são apresentados os modelos, postulados e conceitos da Geometria Elíptica e Geometria Hiperbólica. Além disso, é discutido o ensino dessas Geometrias.
Non-Euclidean Geometry originated from unsuccessful attempts to prove that Euclid’s fifth postulate was a theorem. From the first four Euclidean postulates and the negation of the fifth derived other geometries whose postulates are possible in planes models, and as consistent as that in Euclidean Geometry. This article presents the Elliptical and Hyperbolic Geometry models with their postulates and concepts. A discussion of the teaching and learning of these geometries is also presented.