Equação do Calor: uma comparação entre soluções analítica e computacional para uma barra de cobre finita e isolada termicamente

REMAT: Revista Eletrônica da Matemática

Endereço:
Rua. Gen. Osório - Centro
Bento Gonçalves / RS
Site: https://periodicos.ifrs.edu.br/index.php/REMAT
Telefone: (54) 3204-2100
ISSN: 2447-2689
Editor Chefe: Greice da Silva Lorenzzetti Andreis
Início Publicação: 02/08/2015
Periodicidade: Semestral
Área de Estudo: Ciências Exatas, Área de Estudo: Matemática

Equação do Calor: uma comparação entre soluções analítica e computacional para uma barra de cobre finita e isolada termicamente

Ano: 2018 | Volume: 4 | Número: 1
Autores: Jordana Fernandes Costa, Diogo Gonçalves Dias
Autor Correspondente: Jordana Fernandes Costa | [email protected]

Palavras-chave: Métodos Numéricos; Temperatura; Equação do Calor

Resumos Cadastrados

Resumo Português:

A Equação do Calor é uma equação que representa a difusão do calor em sólidos, a partir do coeficiente de difusividade térmica, que está em função da condutividade térmica, da densidade e do calor específico do material da barra; e da temperatura, em função da coordenada x e do instante t. Essa equação é representada por uma equação diferencial parcial que tem como solução exata uma soma de série infinita. Assim, os objetivos desse trabalho são analisar os aspectos teóricos e computacionais do problema da condução do calor; realizar um código computacional, otimizando o cálculo dos valores das temperaturas, via programa computacional Scilab, que calcula resultados aproximados para a Equação do Calor, a partir da implementação numérica do método das diferenças finitas; e com isso, aplicar em um exemplo simples da Engenharia Civil, comparando os valores de temperaturas exatas e aproximadas de uma barra uniforme em diferentes tempos e seções dessa barra. Dessa forma, os resultados desse trabalho de iniciação científica foram alcançados, pois foram realizados o algoritmo e os gráficos que demonstram essa proximidade entre os valores das temperaturas exatas e aproximadas.