A irrigação é responsável por aproximadamente 70% do consumo de água doce do mundo e é um dos principais fatores por trás da crescente escassez de água global. As técnicas e sistemas de irrigação são extremamente diferenciadas e complexas. Neste contexto, as ferramentas de dinâmica de fluidos computacional (CFD) ganham relevância, permitindo uma análise detalhada e previsão do comportamento hidráulico em diferentes situações. Com o objetivo de avaliar os detalhes do escoamento no gotejador, o presente estudo se aplica a ferramentas de CFD para um sistema de irrigação por gotejamento sob três perspectivas diferentes: (i) analisando o sistema completo composto de tubulações e gotejador; (ii) analisar apenas o gotejador isolado expandido e modelo bifásico; e (iii) com o gotejador isolado operando em regime transiente. Os resultados da modelagem e simulação mais tarde permitiu uma visão completa dos campos de velocidade e pressão e fricção perda ao longo da geometria. O processo de formação de gotas na saída do gotejador pode ser exibido com detalhes e a saída do fluxo de gotejador obtido foi próximo ao valor nominal do fabricante, no caso de análises do gotejador isolado. Embora não tenha sido possível no momento uma comparação com resultados provenientes de experimentos, com base em catálogos de fabricantes, as qualidades dos resultados foram bons e modelagem bem sucedida.
Irrigation is responsible for approximately 70% of the world’s freshwater consumption and is one of the key factors behind the growing global water scarcity. Irrigation systems and techniques are extremely differentiated and complex. In this context, tools of computational fluid dynamics (CFD) earn relevance, allowing a detailed analysis and forecast of hydraulic behavior in different situations. In order to evaluate flow details in a dripper, this study applies CFD tools to study a drip irrigation system from three different perspectives: (i) analysis of the complete system of piping and dripper; (ii) analysis of only the isolated dripper expanded and biphasic model; and (iii) analysis of the isolated dripper operating in transient regime. Modeling results allowed a full understanding about speed fields, pressure and friction loss along the geometry. The drop formation process in the dripper output could be displayed in detail, and the obtained dripper flow output was close to the nominal value of manufacturer, in the case of the isolated dripper analysis. Although a comparison with results from experiments was not possible at the time, based on manufacturers’ catalogs, results proved satisfactory, leading to successful simulations.
Irrigation is responsible for approximately 70% of the world’s freshwater consumption and is one of the key factors behind the growing global water scarcity. Irrigation systems and techniques are extremely differentiated and complex. In this context, tools of computational fluid dynamics (CFD) earn relevance, allowing a detailed analysis and forecast of hydraulic behavior in different situations. In order to evaluate flow details in a dripper, this study applies CFD tools to study a drip irrigation system from three different perspectives: (i) analysis of the complete system of piping and dripper; (ii) analysis of only the isolated dripper expanded and biphasic model; and (iii) analysis of the isolated dripper operating in transient regime. Modeling results allowed a full understanding about speed fields, pressure and friction loss along the geometry. The drop formation process in the dripper output could be displayed in detail, and the obtained dripper flow output was close to the nominal value of manufacturer, in the case of the isolated dripper analysis. Although a comparison with results from experiments was not possible at the time, based on manufacturers’ catalogs, results proved satisfactory, leading to successful simulations.