Este artigo apresenta o desenvolvimento de um modelo de predição de séries temporais financeiras com o uso da Rede Neural Artificial TLFN DistribuÃda (Time Lagged FeedForward Network - Rede Neural Alimentada para frente Atrasada no Tempo), treinada com o algoritmo backpropagation temporal e com o pré-processamento dos sinais de entrada realizado com as Transformadas Wavelets Discretas. A metodologia demonstra como a análise de multirresolução feita com o algoritmo piramidal de Mallat colaborou para o aumento da capacidade de generalização da rede neural, otimizando as previsões feitas pelo modelo implementado. Com a finalidade de demonstrar a eficácia desta metodologia, foi realizado um estudo de caso envolvendo a séries histórica de cotações das cotas, negociadas no mercado secundário, do Fundo de Investimento Imobiliário Almirante Barroso.