DIFFERENTIATED DIFFERENCES

Ciência E Natura

Endereço:
Revista Ciência e Natura | Campus Sede-Cidade Universitária | Av. Roraima nº 1000, Prédio 13, Sala 1122 | Fone/Fax +55(55) 3220-8735 | Bairro Camobi
Santa Maria / RS
97105-900
Site: http://www.ufsm.br/cienciaenatura
Telefone: (55) 3220-8735
ISSN: 2179-460X
Editor Chefe: Marcelo Barcellos da Rosa
Início Publicação: 30/11/1979
Periodicidade: Quadrimestral

DIFFERENTIATED DIFFERENCES

Ano: 1984 | Volume: 6 | Número: 6
Autores: Alcibiades Gazzoni, Alsimar T. Ferreira Gazzoni
Autor Correspondente: Alcibiades Gazzon | [email protected]

Palavras-chave: there are no notes

Resumos Cadastrados

Resumo Inglês:

Given a sequence of real numbers, not necessarily distinct, τ = (τ i ) i = 1 , it is said that a polynomial P interpolates a function f into τ when, for every τ i of τ, which occurs m times, If P (j-1) (τ i ) = f (i-1) (τ i ), j = 1, ..., m where P (j-1) f (j-1) represent, respectively, the derivative of order j-1 of P and f. Define the kth difference of f at points τ i , ..., τ i + Kof τ, as the leading coefficient of the degree polynomial at maximum K that interpolates f into τ i , ..., τ i + KConsidering the definition of kth difference divided, initially, in the present work, the uniqueness of the interpolation polynomial is studied. The following is the definition and some properties of the kth divided difference, and finally, if f is of class C k in [a, b], where a = min {τ j , .. ., τ j + k } b = max {τ j , ..., τ j + k }, then the previous definition of k-th divided difference is equal to iNT (0-1) int (0-t 1 ) int ... (0- tk-1 ) f (k) [t k (τ i + k - τ i + k-1 ) + ... + t 1 (τ i + 1 - τi ) + τ i ] dt k ... dt 1