A pesquisa é resultado do trabalho de conclusão de curso de Lucas Pinto Dutra, sob orientação dos professores Nicolau Matiel Lunardi Diehl e Rodrigo Sychocki da Silva. Na ocasião da pesquisa apresentou-se uma demonstração do Teorema de Rouché. Algumas aplicações do teorema também foram exploradas ao longo do trabalho. O método utilizado para a realização foi a pesquisa bibliográfica, de acordo com a proposta de Gil (2010), possibilitando que o estudo ocorresse a partir da teoria existente sobre os conteúdos explorados. Fundamentado em Lins Neto (2012) e Soares (2014), o trabalho apresentou algumas noções preliminares de números complexos e funções de variável complexa, além das concepções da Teoria de Cauchy e de singularidades, as quais foram necessárias no decorrer do estudo sobre o teorema central explorado na pesquisa. Mostrou-se que o Teorema de Rouché é uma importante ferramenta de variáveis complexas sendo possível através dele enumerar os zeros de funções complexas em determinadas regiões. A partir do Teorema de Rouché foi possível obter uma demonstração simples para o Teorema Fundamental da Álgebra. Ainda como aplicação do teorema em questão, estudou-se sobre a existência de ponto fixo para funções complexas holomorfas em uma bola de raio um.