A distribuição Lindley potência inversa: diferentes métodos de estimação

Ciência E Natura

Endereço:
Revista Ciência e Natura | Campus Sede-Cidade Universitária | Av. Roraima nº 1000, Prédio 13, Sala 1122 | Fone/Fax +55(55) 3220-8735 | Bairro Camobi
Santa Maria / RS
97105-900
Site: http://www.ufsm.br/cienciaenatura
Telefone: (55) 3220-8735
ISSN: 2179-460X
Editor Chefe: Marcelo Barcellos da Rosa
Início Publicação: 30/11/1979
Periodicidade: Quadrimestral

A distribuição Lindley potência inversa: diferentes métodos de estimação

Ano: 2018 | Volume: 40 | Número: 1
Autores: André F. B. Menezes, Josmar Mazucheli e Kelly V. P. Barco
Autor Correspondente: André F. B. Menezes | [email protected]

Palavras-chave: power inverse lindley distribution, methods of estimation,lLikelihood, monte Carlo simulation

Resumos Cadastrados

Resumo Inglês:

In the last years several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. For instance, Ghitany et al. (2013) proposed a new generalization of the Lindley distribution, called power Lindley distribution, whereas Sharma et al. (2015a) proposed the inverse Lindley distribution. From these two generalizations Barco et al. (2017) studied the inverse power Lindley distribution, also called by Sharma et al. (2015b) as generalized inverse Lindley distribution. Considering the inverse power Lindley distribution, in this paper is evaluate the performance, through Monte Carlo simulations, with respect to the bias and consistency of nine different methods of estimations (the maximum likelihood method and eight others based on the distance between the empirical and theoretical cumulative distribution function). The numerical results showed a better performance of the estimatio