Este trabalho apresenta uma análise comparativa entre algumas formas de aproximação das densidades de corrente em cálculos de criticalidade usando a teoria da difusão de nêutrons. Como os reatores nucleares são compostos por diversos materiais, definindo regiões heterogêneas onde os parâmetros nucleares variam de forma significativa, é fundamental que as correntes sejam expressas de tal forma a preservar continuidade nas interfaces das regiões. A partir de uma integração nodal na equação da difusão de nêutrons estacionária, apresentamos quatro propostas de aproximação para as densidades de corrente nas interfaces. Uma vez construído o modelo, o cálculo do parâmetro que define a criticalidade depende da determinação do autovalor dominante. Aqui apresentamos e discutimos três métodos do cálculo deste autovalor. A comparação dos resultados numéricos é realizada a partir de três problemas teste, em meios heterogêneos, disponíveis na literatura. Os resultados obtidos indicam que as aproximações mais efetivas para as densidades de corrente nas interfaces, para cálculos do autovalor e dos fluxos, são aquelas que relacionam os coeficientes de difusão dos dois nós comuns à interface (propostas 3 e 4). Além disso, o método da secante se mostrou mais eficiente para determinação do parâmetro da criticalidade.
This work presents a comparative analysis of different approaches to approximate current densities in criticality calculations using the neutron diffusion theory. As the nuclear reactors are composed of several materials, defining heterogeneous regions, where the nuclear parameters vary significantly, it is necessary to express the currents in such a way as to preserve continuity at the interfaces of the regions. Based on a nodal integration applied to the stationary neutron diffusion equation, we present four proposals to approximate the current densities at the interfaces. Once the model is built, the calculation of the parameter that defines criticality depends on the determination of the dominant eigenvalue. Here we present and discuss three methods of calculating this eigenvalue. The comparison of the numerical results is carried out on the basis of three test problems, in heterogeneous environments, available in the literature. The results obtained indicate that the most effective approximations for the current densities at the interfaces, for calculating the eigenvalue and the fluxes, are those that correlate the diffusion coefficients of the two common nodes to the interface (proposals 3 and 4). In addition, the secant method proved to be more efficient in determining the criticality parameter.