Registramos uma considerável atenção dedicada por parte dos autores de livros de História da Matemática (HM) concernentemente aos clássicos fundamentos do Cálculo Diferencial e Integral. Por outro lado, se mostra imprescindível ao entendimento do professor de Matemática uma compreensão sobre um irrefreável processo matemático e epistemológico evolutivo dos objetos matemáticos, desde seu estádio de nascedouro até o momento atual. Assim, o presente trabalho relata uma Engenharia Didática de Formação (EDF) desenvolvida com a participação de cinco professores em formação inicial, no Instituto Federal de Educação, Ciência e Tecnologia – IFCE, no ano de 2017. O tema abordado envolveu a noção de Números Generalizados de Catalan (NGC) que representa uma contribuição de vários matemáticos e a pesquisa atual sobre inúmeros problemas derivados confirmam seu processo de generalização ininterrupto. O estudo envolveu cinco tarefas e duas situações estruturadas de ensino, com o aporte da Teoria das Situações Didáticas (TSD). Os dados coligidos evidenciam várias propriedades e, sobretudo, teoremas e definições matemáticas descobertas e formuladas pelos sujeitos participantes da investigação o que concorreu para o incremento de suas habilidades profissionais e um conhecimento histórico, epistêmico e pragmático sobre a noção.
We have recorded considerable attention on the part of the authors of Mathematical History (MH) books concerning the classical fundamentals of Differential and Integral Calculus. On the other hand, it is essential to the understanding of the Mathematics teacher an understanding about an unstoppable mathematical and evolutionary epistemological process of the mathematical objects, from its nascent stage to the present moment. Thus, the present work reports a Training Didactic Engineering (EDF) developed with the participation of five teachers in initial formation, in the Federal Institute of Education, Science and Technology - IFCE, in the year 2017. The topic covered involved the notion of Numbers Generalized Catalan (NGC) that represents a contribution of several mathematicians and the current research on numerous derived problems confirm its process of uninterrupted generalization. The study involved five tasks and two structured teaching situations, with the contribution of the Theory of Educational Situations (TSD). The collected data show several properties and, above all, the theorems and mathematical definitions discovered and formulated by the subjects participating in the research, which contributed to the increase of their professional skills and a historical, epistemic and pragmatic knowledge about the notion.